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J. Phys. A Math. Gen. 26 (1953) 395-410. Printed in the UK 

Two forms of self-similarity as a fundamental feature of the 
power-law dielectric response 

K Weront and A Jurlewiczz 
t Institute of Physics, 'khnical University of Wroclaw, 50-370 Wrodaw, Poland 
$ Hugo Steinhaus Center for Stochastic Methods, Technical Universily of Wmlaw, 
50.370 b l a w .  Poland 

AbstracL A new mathematical representation of the cluster model for dielectric 
relaxation, in a bound dipole case, is established by employing the extrema1 value theory. 
TWO distinct probabilistic mechanisms, which drive the dielectric response function U) 
acquire the power-law form, are presented. Consequently, WO forms of self-similarity, 
one of which dominates the response at short limes and the other at long limes, leading 
to a general relaxation equation, are identified. Finally, the conditions under h i c h  
the derived response function takes the well knoull empirical forms (William-Mtts, 
Cole-Cole, Cole-Davidson, 'broadened' Debye, and 'flat loss' responses) are recognized. 

1. Introduction 

From the studies [ 1-31 on the dielectric relaxation phenomena in complex condensed 
systems it became clear that the functions which describe their dynamical behaviour 
deviate considerably from the predictions of the Debye exponential relaxation laws. 
It was found that the regression of polarization fluctuations to equilibrium proceeds 
faster than exponential at times shorter than the relaxation time re and slower than 
exponential at times greater than T ~ .  On the basis of linear dielectric response 
measurements, which have the important facility of allowing one to follow the 
regression of spontaneous structural (dipolar) fluctuations over several decades of 
time (typically 10-'"-104 s), the existence of fractional power-law response 

1 for t < - 
WP 
1 for t >> - 
WP 

in relaxation dynamics has been established unambigously and has been shown to be 
the ubiquitous pattern of behaviour [3,4]. The parameters in (1.1) are 0 < n, m < 1 
and the loss peak frequency up = 1 /+ .  Such a widespread and specific deviation 
from exponential ideality implies that t i e  fundamental physical principles governing 
relaxation must have a general form 151. 

Over the last decade the physical basis for the power-law behaviour has been 
the subject of a great deal of interest and it has been pointed out that despite 
differences in physical details, all the proposed models are based in a hierarchy 
of self-similar processes 15-7. It has, therefore, been suggested that self-similarity 
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(fractal behaviour) is a fundamental feature of relaxation in real materials. Most 
models [6-111 identify only one region of fractal behaviour which crosses over at long 
times to a non-fractal behaviour. On the basis of experimental observation [4], it has 
been argued [S, 121 that the relaxation of dipolar systems involves a cross-over to a 
different form of self-similarity. This identification of two different fractal regions in 
the observed dielectric relaxation was strengthened by the analytical derivation for 
a simple deterministic fractal circuit model [13]. It has also been shown [14] that 
the theoretical response function previously derived [12] are equivalent to those of a 
deterministic fractal circuit. 

The dielectric response [12] originates with specific regions of the dielectric 
containing dipoles whose positions can be altered by an electric field. The lack of 
ideal (or close) molecular packing that allows such rearrangements yields a structural 
flexibility which extends over a ‘defect’ region or clusters containing both dipoles and 
their local environment. One form of self-similarity is identified with the internal 
dynamics of these regions [SI. Since the regions are limited in spatial extent, any 
sample of the material is supposed to contain macroscopic quantities of the same 
type of defect. Thus the second form of self-similarity is refered to the way in which 
the response of the macroscopic system is built up from its cluster components [SI. It 
is concluded that these two self-similar regimes are a natural consequence of systems 
composed of interwoven cluster groups rather than site dipoles. 

In this paper, which is a continuation of (151, we propose a probabiliitic 
representation of dielectric systems composed of cluster groups uniquely leading 
to the power law (1.1). Our aim is to establish the origins for the two fractal 
regimes of relaxation in more general (random) systems than that of the deterministic 
fractal circuit [14]. We discuss the mathematical foundation and consequences of the 
proposed statistical approach, which can be helpful in searching for the general form 
of the fundamental physical principles governing relaxation. The presentation given 
in this paper is a further development of the idea of a stochastic dependence between 
the variables describing relaxing dipolar systems introduced in [15,16]. A new feature 
of this work is a rigorous mathematical approach to the dielectric relaxation based 
not only on the theory of the Uvy-stable laws (as in [15]) but also on the extrema1 
value theory. We derive the only possible form of the general relaxation equation and 
discuss the significance of its solution. The relaxation function (and, consequently, 
the response function) obtained in [15] appears to be a special case of the solution 
presented here. 
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2. Waditional interpretation of dielectric relaxation phenomena 

Debye [17], with his classic treatment of dielectric relaxation, set the framework for 
much of our intuition about relaxation. He derived the law governing how initially 
aligned small, spherical, dipolar molecules relax in a fluid when the external electric 
field is removed. The relaxation function was calculated to be exponential: 

where T~ is the Debye relaxation time. 
The simplest way to obtain a different result to that of the conventional Debye 

relaxation, characterized by a single relevant relaxation time T,, is to postulate a 
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statistical distribution of relaxation times T across different atoms, clusters, or degrecs 
of freedom 191. Then with the assumption of additive contributions, it is natural to 
write 

m 

+(t) = / w(r)exp - -  dT 
0 ( 3 (2.2) 

where any reasonable +(t )  can be explained by a suitable choice of the weight 
distribution ~ ( 7 ) .  However, the choice of distribution is not arbitrary, but defined 
by (1.1); this approach does not explain the universality of the empirical relaxation 
law. Is this approach, therefore, completely useless? Does it merely mimic a real 
situation [SI? Or is something missing in the mathematical analysis? 

We focus below on a careful probabilistic analysis of this traditional approach to 
relaxation in dipolar systems; our ultimate aim is to show the uniqueness of the form 
of relaxation function expressed by (22). 

Let us consider a polar dielectric in an electric field. When the electric field is on, 
some of the dipoles have enough energy and time to reach a configuration with the 
dipole momenta aligned along the field lines. Now let us remove the field. How and 
according to what law will the dipole orientations relax to a random configuration? 

The traditional interpretation of relaxation phenomena is based on the concept of 
a system of independent exponentially relaxing species with different (independent) 
relaxation rates. The exponential relaxation of an individual dipole is conditioned 
only by the value taken by its relaxation rate. So, if the relaxation rate of ith dipole 
has taken the value b, then the probability that this dipole has not changed its initial 
aligned position up to the moment t ,  is 

Pr(ei > tlpi = b) = exp(-bt) for t > 0 b > 0 .  (23) 

The random variable pi denotes the relaxation rate of ith dipole and the variable Bi, 
the time needed for changing its initial orientation; PI, p2,. . . and e,, e,, . . . form 
sequences of non-negative, independent, identically distributed random variables. 

Following [6] we define the relaxation function +;(t)  for i th  dipole as a probability 
that it has not changed its initial aligned position up to the moment t. From the law 
of total probability, we have 

+ i ( t )  = Pr(ei 2 t) = exp(-bt)dFg(b) (2.4) 1- 
where Fp is the distribution function of each relaxation rate pi, Le. Fs(b) denotes 
the probability that the relaxation rate of ith dipole has taken a value less than or 
equal to b. 

In a system consisting of a large number N of relaxing dipoles, the relaxation 
function +(f) has to express the probability that the whole system has not changed 
its initial state until the time t. So 

+(t)  = lim Pr (A, min(e,, . . . ,e,,) > t )  
N-rW 

where A, is a suitable normalizing constant. In order to obtain an explicit form 
of +(t),  let us observe that the right-hand expression in (2.4) is just the Laplace 
transform of the distribution function Fs(b) at the point t (see (A4)), 

Pr(e, 2 t )  = L ( F ~  ; t i .  
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Because Bi are independent, we get 
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N 

The Nth power of the Laplace transform of the non-degenerate distribution function 
Fa converges to the non-degenerate limiting transform, as N tends to infinity, if and 
only if Fp belongs to the domain of attraction of the Uvy-stable law (see appendix 
A). Then, for some 01 , 0 < Q < 1, we have 

where A is some positive constant. Hence, the limiting transform in (2.6) is the 
Laplace transform of the Gvy-stable distribution function. 

It is not necessary to know the detailed nature of Fa to obtain the above limiting 
form. In fact, this is determined only by the behaviour of the tail of Fp(b) for large 
b, and so a good deal may be said about the asymptotic properties based on rather 
limited knowledge of the properties of Fp. Namely, the necessary and sufficient 
condition for the relaxation rate pi to have the limiting transform in (2.6) is the 
self-similar property in taking the value greater than b and the value greater than 
s b  (see (A3)). It has been suggested r5-71 that self-similarity (fractal behaviour) 
is a fundamental feature of relaxation in real materials. This result, obtained here 
by means of pure probabilistic techniques, independently of the physical details of 
dipolar systems, is in agreement with models [6-111 identifying this region of fractal 
behaviour. 

Therefore the relaxation function (2.5) with A, = N1/O for some 0 < 01 < 1, is 
well defined and equals 

4( t )  = exp[-(At)"I (2.7) 

where A is a positive constant In the case when Q t 1, the relaxation function (27) 
obtains the Debye form (21) with T~ = A-'. From the mathematical point of view 
[26] this corresponds to the case of degenerate distribution function Fp, i.e. to the 
case when the random relaxation rate can take only one value. (Let us note that the 
weight distribution w ( . )  in (2.2) has to be identified [ll] as W(T) = b*p(b;a,l), 
where p( b; 01, 1) is the density function of the Uvy-stable distribution supported on 
the non-negative half-line and b = I/T.) 

At this point, it has to be stressed that independently on a statistical distribution 
of relaxation rates pi, in expression (2.3) we find a hidden assumption. Namely, each 
relaxing dipole after a sufficiently long time (after removing the electric field) changes 
its initial position with probability 1, i.e. 

(2.8) 
1 f o r t  = 0 
0 f o r t - m .  

P r (B ,> t Ip ,=b)=exp( -b t )=  

This is the main reason why the relaxation function (2.5) cannot have any other 
form than (2.7). Namely, it follows from (2.8) that the random variable 6'; is finite 
with probability 1, so this form is a simple consequence of the extrema1 value theory 
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for minima [27], and not only the result of the above analysis. Then, in order 
to obtain a class of dielectric responses broader than the Williams-Watts form, we 
should modify (2.3) to define a random variable which can be infinite with some 
non-zero probability. As we will see below such a modification leads us directly to 
the experimentally observed power law (1.1) which includes the Williams-Watts and 
the Debye responses as special cases. 

3. Probabilistic representation of the cluster model for dielectric relaxation 

The concept contained in the cluster model [S, 12,141 represents a radical departure 
from the traditional picture of relaxation. It is based on a realistic picture of the 
physical nature of the structure of an imperfectly ordered state and its consequences 
for the dynamics of its mnsistuent molecules or atoms. It is suggested that the 
condensed phase systems, both liquids and solids, which exhibit position or orientation 
relaxation, are composed of spatially limited regions (clusters) over which a partially 
regular structural order of individual units extends. Orientation or position changes 
of individual units can be produced by the application of an appropriate field, such 
as an electric field when the individual units are dipolar. In the limit of the h e a r  
response, the probe field may only change the population of fluctuations without 
altering their nature. Because the structural ordering within the cluster is incomplete, 
the equilibrium geometry cannot be maintained by these displacement fluctuations. 
Therefore spatial uniformity must be lost on relaxing as the imperfect equilibrium 
structure evolves. During this process the strongly coupled local motions are expected 
to be generated first, thereby breaking down the displacements into clusters; this will 
be followed by the weakly coupled intercluster motions which produce the partial 
long-range structure. Each of these processes (motions leading to the local structure 
order and to the gross cluster array order) have their own characteristic contribution 
to the observed features. In this model, from the consideration of the way in which 
the energy contained in fluctuations is distributed over a system of interacting clusters, 
entirely new expression for the response function in the bound dipole case has 
been obtained. However the result is in agreement with the empirical power law 
(U), the argumentation based on the properties of deterministic fractal circuits does 
not convince us of the general applicability of this model. In general, the cluster 
model can be seen to encompass the concept of a constraint hierarchy [12]. A 
hierarchical scheme, with faster degrees of freedom succesively constraining slower 
ones, is considered [9] as the only reasonably natural way of generating a wide range 
of relaxation times. It is also suggested [9] that a modified traditional approach 
of independent relaxing species with random relaxation rates, in which a picture 
of parallel relaxation should be changed to a serial summation of a hierarchy of 
relaxations, can be used in the description of relaxation phenomena. 

We propose below a modification of the traditional approach according to 
the analysis given in section 2. Instead of the properly (2.8) we assume that 
a dipole altered by the electric field does not have to change its initial position 
with probability 1. Since, in the cluster model, the subsequent relaxations of the 
surrounding clusters drive the chosen one towards the ensemble equilibrium on the 
time scale of the surroundings, the behaviour of a relaxing dipole in this cluster will 
be constrained by the maximal time of the structural reorganization in all surrounding 
clusters. At this point, we supply no detailed microscopic connection, hoping only to 
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find a probabilistic mechanism which confirms the conclusions of the cluster model 
and uniquely leads to the empirical power law. 

Let us assume indepcndcnt exponential relaxations constrained by the maximal 
time of the structural reorganization in all surrounding clusters. In the system 
consisting of a number N of relaxing dipoles, the probability that the ith dipole 
has not changed its initial position up to the moment t equals exp[-bmin(t,s)j 
if its relaxation rate has taken the value b and the maximal time of the structural 
reorganization in all surrounding clusters (under the suitable normalization) has been 
equal to s, i.e. 

PI 
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2 t I Pi = b, a i 1  max(q,, . . . , q,-, , q,+,, . . . , q,) = s) = exp[-bmin(t,s)] 

( 3 4  

for b > 0, s > 0, i 2 0. The random variable pi denotes the relaxation rate of the ith 
dipole and the variable vi, the time needed for the structural reorganization of ith 
cluster. The variable OIN denotes the time needed for changing the orientation by the 
ith dipole in the system consisting of N relaxing dipoles. PI, &, . . . and q,, qz,. . . 
form independent sequences of non-negative, independent, identically distributed 
random variables. The variables . . , eNN are also non-negative, independent, 
identically distributed for each N. It follows from (3.1) that the random variable 
O i N  depends on the random variable pi and on the sequence of random variables 
v,,. . . ,?,-,, v+,, . . . , vw.  

In contrast to (2.8) we have 

Pr (e,N 2 t I P, = b, a;’max(q,,. . . ,q , - , 3q , t , , .  ..,qN) = s) 

1 for t = 0 
for t < s 

exp( - bs) = constant > 0 for t -+ CO . 
= { exp(-bt) 

It means that dipoles altered by the external field do not have to change their initial 
positions with probability 1 after removing the field as t tends to infinity. 

The relaxation function + ( t )  has to express the probability that the whole system 
has not changed its initial state until the time t. So, in a system consisting of a large 
number of relaxing dipoles, 

+(t )  = N - w  lim Pr(ANmin(8,N,... ,tJNN) 2 t) (3.2) 

where A, is a suitable normalizing constant. The function +( t) defined by (3.2) is 
monotonically decreasing and non-negative. Moreover, non-negativity of B I N  gives us 
$(O) = 1. In order to obtain further properties of d(t) ,  first we will show that +(t)  
fulfils the general relaxation equation (15). 

Since sequences PI, &, . . . and q,, q 2 , .  . . are independent, we have from the law 
of total probability 

W 

Pr(O,, 2 1 I Pi = b )  = 1 exp[-bmin(t,s)]dF,,,(s) 
0 
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where F, ,N(s)  denotes the distribution function of the random variable 
a;’ma~(q,, . . . , q , - l ,  q,,, , . . . , qN),  i.e. the probability that this random variable 
has taken a value less than or equal to s. Since qj  are independent and identically 
distributed, we have F, (s) = [F (aNs)IN-’ ,  where F, denotes the distribution 
function of each qr,.Ass&ng F, differentiable, we have F,,N differentiable, too, and 

From the law of total probability once again, and from the Lebesgue theorem, we 
have 

where L( Fp; 1 )  is the Laplace transform of the distribution function Fp of each p; 
at the point t (see (A4)). 

Because are independent and identically distributed for each N, we have 

On the other hand it follows from (3.3) that 

dt  2 2-1” = [ P T ( B ”  b t)lN-’[1- ..4k)] 
x [c( Fp; k)] -Ntl: [c( Fp; k)] N. 

(3.4) 

(3.5) 

As we know from the previous section, the Nth power of the Laplace transform of 
a non-degenerate distribution function Fp converges to the non-degenerate limiting 
transform, as N tends to infinity, if and only if Fp belongs to the domain of attraction 
of the Uq-stable law, and, for some 0 < a < 1, we have 

where A is a positive constant. At the same time, 

tends to a non-degenerate distribution function of non-negative random variable, as 
N tends to infinity, if and only if F,,, the distribution function of each vJ, belongs to 
the domain of attraction of the maw-stable law of type I1 (see appendix B). Then, for 
the normalizing constant a N  proportional to ,‘/“inf{t : F,(t)  2 1 - (1/N - 1)} 
we have 

(3.7) 
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for some positive constants y and k, and A taken from (3.6). To obtain the limiting 
forms (3.6) and (3.7) we need not know the detailed nature of Fa and F,. In 
fact, this is determined only by the behaviour of the tail of Fa(b) for large b (as 
in section 2) and of the tail of F,(s) for large s i.e. the necessary and sufficient 
conditions for the relaxation rate pi and for the structural reorganization time 11, to 
have the limits in (3.6) and (3.7) are the self-similar properties, firstly of pi, in taking 
the value greater than b and the value greater than xb (see (M)), and secondly of 

in taking the value greater than s and the value greater than xs (see (B3)). 
The relaxation function in (3.2) with A,., = N1/e is well defined and, by (3.4)- 
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(3.7), fulfils the general relaxation equation 

The coefficient k is a consequence of the normalization in the limiting procedure in 
(3.7). It decides how fast the structural reorganization of clusters is spread out in a 
system-k + 0 means the case in which cluster components are neglected. If k -+ 0, 
(3.8) takes on the well known form IS, 6, 17-21] 

9 ( t )  = -aA(At)O-'+(t) 
dt (3.9) 

with the solution (27). In the general case we get the solution in the integral form 

(k'l'At)* 
+(t )  = e x p [ - ( i ) e ' f l  [ l - e x p ( - ~ - ~ / ~ ) ] d s ] .  (3.10) 

It is worth noting that the relaxation function (3.10) can be rewitten in the following 
form: 

4(t )  = exp[-cS(t)l 

where c = k--/ f  and 

A similar form has been obtained as a result of the studies of different approaches 
(the Forster direct-transfer model, the hierarchically constrained dynamics model, and 
the defectdiffusion model) analysing non-exponential relaxations, with emphasis on 
the stretched exponential Williams-Watts form (61. Although each model describes 
a different mechanism, they have the same underlying reason for the stretched 
exponential pattem the existence of scale invariant relaxation rates. Presenting one 
more approach, we have obtained the Williams-Watts relaxation function (2.7) as a 
special case of (3.10) when k - 0. We have also shown that the underlying reason 
for this is the existence of a type of self-similarity in the behaviour of relaxation rates. 

Let us discuss the properties of the relaxation function +(1) given by (3.10). As 
is shown in (U), as t tends to infinity, 4 ( t )  tends to zero if y 4 a, and to some 
positive constant otherwise. 
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The dielectric function most easily measurable experimentally is the response 
function f(t)  defined as 

(3.11) 

This function, where 4 ( t )  is given by (3.10), exibits the power-law properties (1.1) in 
both short- and long-time limits only if y > a (see (a), (a)). Namely, we obtain 

C1(At)-" a s A t < l  

C,( At)-"+' a s A t B 1  
(3.12) 

where n = 1 - a, C, = aA,  and 

Q 
i f y = a  

y - a  i f y > a  

The power law (3.12) in the case y = a, with the parameters n = 1 - a and 
m = a / k ,  has been obtain earlier in [15]. 

4. Discussion of the dielectric response function. 

A discussion of the significance of the solution +(t)  of the general relaxation equation 
(3.8) may be given with reference to tables 1 and 2 The relaxation function 4(t)  is 
determined by the parameters 0 < a < 1, y > a, A > 0, and IC > 0. Depending 
on the value taken by the parameter y, there are clearly seen two distinct cases 
leading to the same form of the power-law response (3.12). We also have to note the 
importance of the parameter k which distinguishes the two-parameter power-law from 
the one-parameter Williams-Watts and Debye response functions, i.e. if k is small, 
the general relaxation equation (3.8) takes the form of the so-called unimolecular 
fractal equation of motion (3.9) with the solution (2.7) which is just the Williams- 
Watts relaxation function. Moreover, if a -+ 1 we obtain the rarely observed Debye 
case (2.1) 

In table 1 we compare the properties of the relaxation function $ ( 1 )  and the form 
of power-law coefficients n,  m in two admissible cases: y = a and y > a. It has to 
be stressed that the results 0 < n < 1 and m > 0 are obtained theoretically, while 
m < 1 is imposed by the experimental data. 

In table 2 we present the various empirical dielectric responses representing 
specific limiting conditions for parameters determining the relaxation function @( t). 
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Table 1. Power-law response 

Parameter y y=o1 r > u  
Propenies of the 4(0) = 1 
relaxation function $(t )  monotonically decreasing 

response function f(t) f ( t )  { (At)-m-l a s A t B 1  
Form of the power-law n = l - a  
coefficienb n , m m = ojk m = y - o l  

Propenies of the O < n < l  
power-law mefficients n ,  m 

4(t) t z m o  4(t) t=-& 4(m) > 0 

Limiting properties of the (At)-" a s A t a 1  

since 0 < 01 < 1 
m > O  m > O  
since k > 0 ,a  > 0 
m < 1 fork  > 01 

since y > oil 01 > 0 
m < 1 for y < 1 +  o1 

Table 2. Special cases of the empirical dielectric response 

Parameter y y = u  7 > "  
mica1 experimental 1 - n < m < l  
observations a < k < l  2a < 7 < 1-l O1 

Less typical experimental O < m < l - n  

Cole-Cole response m = l - n  
k = l  y = 2 u  

Cole-Davison respnse O <  n < 1 , m  3 1 
k - o l  Y - ' l + o 1  

Broadened Debye response n 3 0, m -+ 1 

Rat loss response n + l , m - + O  

obsewations k > l  a < y < Z a  

a - 1 , k - 1  0 1 - + 1 , - , - 2  

a - O , k > O  o r - + O , . i - O  

According to the studies presented in 1221 the domain of 'typical' experimental 
observations represents the majority of the observed data, while 'less typical' one 
represents the remaining data. Among the two-parameter responses we recognize not 
only the well known symmetric ColeCole and asymmetric Cole-Davidson relaxations, 
but also the Debye-like (broadened Debye) and the frequency-independent (flat loss) 
relaxations [3]. The 'broadened Debye' case was not previously recognized as a 
specific form of relaxation, although it can be modelled by the generalized function 
obtained in the cluster model [12] and is sometimes observed experimentally [3]. 

5. Conclusions 

Previous analyses of experimental data [S, 12-14] have demonstrated that the cluster 
model provides a very good description of dielectric relaxation. Its unique feature is 
the presence of two power-law regions of time dependence, and we have shown that 
this can be attributed rigorously to two forms of self-similarity. In contrast to [13,14] 
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we have studied here more general random systems than that of the deterministic 
fractal circuits. 

In section 2 it has been shown that the traditional approach, based on the concept 
of a system of independent exponentially relaxing species with different relaxation 
rates, cannot be accepted since it leads to the relaxation function of the Williams- 
Watts form only. Consequently, in section 3, independent exponential relaxations 
constrained by the maximal time of the structural reorganization in all surrounding 
clusters have been postulated. Following our earlier work [I51 we have developed 
a probabilistic representation of the cluster model by employing here the earemal 
value theory. As a result we have shown explicitly how to identify two regions of self- 
similarity leading to the general relaxation equation (3.8). Let us stress that the two 
self-similar behaviours provide the necessary and sufficient conditions for the limiting 
formulas (3.6) and (3.7), determining the parameters 0 < a < 1, y > 0, A > 0, and 
k > 0 in the general relaxation equation. We have also proved that the response 
function given by (3.11) exhibits the power-law properties in both short- and long- 
time limits only if y 2 a. In section 4 the form of the power-law coefficients n, m in 
both possible cases y = a and y > a has been discussed (table I), and, finally, the 
experimentally obsemd dielectric response functions have been recognized (table 2). 

We realize that there are still open questions to which the presented probabilistic 
analysis does not give answers. For example, the physical sense of the above 
coefficients has not been achieved yet. However, we hope that the formalism 
presented here may have practical significance. 
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Appendix A 

In this appendix we collect some facts from the theory of the Uvy-stable laws on 
non-negative half-line [23,24]. Because over the last decade the Uvy-stable laws have 
become very popular in modelling real phenomena [25,26], we will limit ourselves to 
reviewing basic definitions and facts. 

Let p,, pz, . . . be a sequence of non-negative, independent, identically distributed 
random variables and let F(b) denote the distribution function of each pi, i.e. 

The distribution function F is said to be Uvy-stable if it is non-degenerate and 
F(b)  = Pr(pi < b). Let S, = + & + ... t P,. 
if there exist some constants A, > 0 such that 

Pr - < b  = F ( b )  fo reachb>O.  (2 ) 
In such case there exists constant a, called the index of stability, 0 < a < 1 such 
that A, = nila. 

The distribution function F belongs to the domain of attraction of the Levyy-stable 
law if for some constants A, > 0, A > 0, we have 
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for stable G with some index of stability a, 0 < a < 1 (the notation -% denotes the 
weak convergence, i.e. the convergence at continuity points of the limiting function). 
In this case, A, is proportional to n1la. 

It should be stressed that for any distribution function F if the non-degenerate 
limiting function G in (Al) exists it is Uvy-stable. 

The distribution function F belongs to the domain of attraction of the Uvy-stable 
law with the index of stability a if and only if 
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for each I > 0. 1 - F(xb)  = x-" lim 
6-m 1 - F(b)  

Let us observe that the condition (A2) can be interpreted as a type of self- 

for any I > 0 Pr(p, > +b) = PI(& > b) for large@iU) 

For non-negative random variable p with the distribution function F(b) we define 

similarity: 

the Laplace transform in the following way: 

C ( F ; t )  =lmexp( -b t )dF(b )  t 2 0 .  

Let us note that the function exp(-t"), 0 < a < 1, is the Laplace transform 
of the Uvy-stable distribution function with the index of stability a, and that the 
condition (Al) is equivalent to 

C. F,- + exp[-(At)"] . 1 ( a,)l".-*, 
Appendix B 

In this appendix we present basic facts from the classical extremal value theory [27]. 
Classical extremal value theory is the asymptotic theory for maxima of independent 
identically distributed random variables. The fundamental result of this theory, called 
the extremal types theorem, states that the limiting distribution of such a maximum 
under the linear normalizations has one of just three possible forms. The next result 
gives us necessary and sufficient conditions under which this limiting distribution is 
each of these types. It also gives us the form of normalizing constants. 

Let q,, q2,. . . be a sequence of independent identically distributed random 
variables and let F ( t )  denotes the distribution function of each qi. Let M, = 
max(vl , . . . ,vn) .  

I. Extrema1 types theorem for maxima 

If for some constants Q, > 0, b,, we have 

Pr( a, ( M, - b, ) 6 t )  % G( t )  a s n - r c o  
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for some nondegenerate G, then for some constants a > 0, b, we have G(t)  = 
Gu(at + b), where G,, is one of the three following extremal value types for maxima: 

p p e  I: G,,(t) = exp(-e-') -CO < f < +M 

for some 7 > 0 t < o  
t $0. 

p p e  111: G,(t) = 

Conversely, each distribution function G,, of extremal value type may appear as a 
limit in (Bl) and, in fact, appears when G,, itself is the distribution function of each 
vi. 

If the non-degenerate limit in (BI) exists we say that F, the distribution function 
of each qi, belongs to the domain of attraction of the max-stable law of adequate 

Now we will formulate the conditions under which a distribution function belongs 
to the domain of attraction of max-stable laws. Ai we see below, in the case of m e  
11, it is the tail behaviour which is responsible for this; in this case the tails have to 
have a self-similar properly of a special type as for the domain of attraction of the 
Uvy-stable law (see (A3)). 

Necessary and sufficient conditions for the 
distribution function F to belong to the domain of attraction of max-stable law 
are: 

Type I: 

tyP" 

Let t ,  = sup{t : F ( t )  < 1). 

There exists some strictly positive function g ( l )  such that 

me 11: tF  = M 

and 

= 2-7 y > 0 for each x > 0 
1 - F ( t z )  

lim 
f-m 1 - F ( t )  

m e  111: t ,  < 03 

and 

'Ib obtain G = Go, the constants a,, b, in the convergence (B1) should be taken in 
each case above to be 

m e  I: a ,  = [s(6,)l-' b, = 6, 
14ppe 11: a, = (&,)-' b, = 0 
ppe  111: a, = ( t ,  - &)- b, = t ,  

where 6, = inf{t : F(1) 2 1 - l/n}. 
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Let us consider now only non-negative random variables vi. However, we can 
obtain as a limit in (BI) the distribution function of each extremal!value type for 
maxima. But, if we demand this limit to be supported on the non-negative half-line, 
we have onIy one possible form of it, namely, the type 11. For this type the condition 
(B2) can be interpreted as a form of self-similarity: 

for any T > 0 Pr(qi > XS) = X-7 Pr(vi > S )  for large s . (83) 

Appendix C 

This appendix contains the detailed proof of the power-law properties (3.12) of the 
response function (3.11). We use the log-log scale, so, let g(s) = logf(A-'IO"). 
From (3.8) we have 

f( t )  = aA(At)"-' [ 1 - exp ( -- (A;-7)]4(t) 

and 

It is easy to find that 

dg -(s) + a-1 
d s  53-m 

and 

y = a :  

I -CO y < a .  

As one can see, the long-time limit in the log-log scale is finite only if y 2 a, so 
only in this case can the response function f exibit the power-law properties in both 
short- and longtime limits. From (C2) we get the only possible form 

C,( At)-n a s A t g l  

C,( A t ) - as At B 1 - 

where n = 1 - a and 

( 7 - a  i f - / > a  

'Ib show (13) we have to prove that, as t - 0, (At)'-=f(t) and, as t -, CO, 

(At)('-")+'f(t) or (At)"lk+'f(t) tend to strictly positive constants C,, C,, 
respectively. 
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It is not difficult to show that the integral J,"[l- exp(-s-y/=)]ds is finite if and 
only if y > a. Hence, for the relaxation function (3.10) we have 

From ( C l )  we have 

since d(0) = 1. Also 

is, by (a), a positive constant if y > a. In the case y = Q we get 

l t l / k  
= .A(:) exp[-; (l[1- exp(-s-')Ids 

+ i m [ l  - l/s - exp(-s-')]ds 

is a positive constant since the integral /T[l - l/s - exp(-s-')]ds is finite. 

property only if y > a and of the form 
Therefore, by (U), (C5)-(C7), the response function (3.11) has the power-law 

where n = 1 - a, C, = Q A ,  and 

c 2 =  { + l m [ l  - l/s - exp(-s-')]ds )] i f y = a  

( ~ e x p ( - ( $ ) m / 7 / m [ l - e x p ( - ~ - 7 / a ) ] d s )  U i f y > a .  
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