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Two forms of self-similarity as a fundamental feature of the
power-law dielectric response
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t Institute of Physics, Technical University of Wroclaw, 50-370 Wroclaw, Poland
1 Hugo Steinhaus Center for Stochastic Methods, Technical University of Wroctaw,
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Abstract. A new mathematical representation of the cluster model for dielectric
relaxation, in a bound dipole case, is established by employing the extremal vailue theory.
Two distinct probabilistic mechanisms, which drive the dielectric response function to
acquire the power-law form, are presented. Consequently, two forms of self-similarity,
one of which dominaies the response at short times and the other at long times, leading
to a general relaxation equation, are identified. Finally, the conditions under which
the derived response function takes the well known empirical forms (Williams-Watts,
Cole-Cole, Cole-Davidson, ‘broadened’ Debye, and ‘flat loss’ responses) are recognized.

1. Introduction

From the studies [1-3] on the dielectric relaxation phenomena in complex condensed
systems it became clear that the functions which describe their dynamical behaviour
deviate considerably from the predictions of the Debye exponential relaxation laws.
It was found that the regression of polarization fluctuations to equilibrium proceeds
faster than exponential at times shorter than the relaxation time r, and slower than
exponential at times greater than 7,. On the basis of linear dielectric response
measurements, which have the important facility of allowing ome to follow the
regression of spontaneous structural (dipolar) fluctuations over several decades of
time (typically 10~1-10* s), the existence of fractional power-law response

(wgt)™™ for ¢ < —

F(t) lp (L)
(wyt)~™! for t » —
“p

in relaxation dynamics has been established unambigously and has been shown to be
the ubiquitous pattern of behaviour [3,4]. The parametersin (1.1) are 0 < n,m <1
and the loss peak frequency w, = 1/7,. Such a widespread and specific deviation
from exponential ideality 1mphes that tﬁe fundamental physical principles governing
relaxation must have a general form [5).

Over the last decade the physical basis for the power-law behaviour has been
the subject of a great deal of interest and it has been pointed out that despite
differences in physical details, all the proposed models are based in a hierarchy
of self-similar processes [5-7]. It has, therefore, been suggested that self-similarity
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(fractal behaviour) is a fundamental feature of relaxation in real materials. Most
models [6-11] identify only one region of fractal behaviour which crosses over at long
times to a non-fractal behaviour. On the basis of experimental observation [4], it has
been argued I5,12] that the relaxation of dipolar systems involves a cross-over to a
different form of self-similarity. This identification of two different fractal regions in
the observed dielectric relaxation was strengthened by the analytical derivation for
a simple deterministic fractal circuit model [13]. It has also been shown {14] that
the theoretical response function previously derived [12] are equivalent to those of a
deterministic fractal circuit.

The dielectric response [12] originates with specific regions of the dielectric
containing dipoles whose positions can be altered by an electric field. The lack of
ideal {or close) molecular packing that allows such rearrangements yields a structural
flexibility which extends over a ‘defect’ region or clusters containing both dipoles and
their local environment. One form of self-similarity is identified with the internal
dynamics of these regions [5]. Since the regions are limited in spatial extent, any
sample of the material is supposed to contain macroscopic quantities of the same
type of defect. Thus the second form of self-similarity is refered to the way in which
the response of the macroscopic system is built up from its cluster components [S]. It
is concluded that these two self-similar regimes are a natural consequence of systems
composed of interwoven cluster groups rather than site dipoles.

In this paper, which is a continuation of [15], we propose a probabilistic
representation of dielectric systems composed of cluster groups uniquely leading
to the power law (1.1). Our aim is to establish the origins for the two fractal
regimes of relaxation in more genetal (random) systems than that of the deterministic
fractal circuit [14]. We discuss the mathematical foundation and consequences of the
proposed statistical approach, which can be helpful in searching for the general form
of the fundamental physical principlcs governing relaxation. The presentation given
in this paper is a further development of the idea of a stochastic dependence between
the variables describing relaxing dipolar systems introduced in [15,16]. A new feature
of this work is a rigorous mathematical approach to the dielectric relaxation based
not only on the theory of the Lévy-stable laws (as in [15]) but also on the extremal
value theory. We derive the only possible form of the general relaxation equation and
discuss the significance of its solution. The relaxation function (and, consequently,
the response function) obtained in [15] appears to be a special case of the solution
presented here.

2. Traditional interpretation of dielectric relaxation phenomena

Debye [17], with his classic treatment of dielectric relaxation, set the framework for
much of our intuition about relaxation. He derived the law governing how initially
aligned small, spherical, dipolar molecules relax in a fluid when the external electric
field is removed. The relaxation function was calculated to be exponential:

i
8,0 =exp(-) @)
T,
D
where T, is the Debye relaxation time.
The simplest way to obtain a different result to that of the conventional Debye
relaxation, characterized by a single relevant relaxation time 7, is to postulate a
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statistical distribution of relaxation times r across different atoms, clusters, or degrees
of freedom [9]. Then with the assumption of additive contributions, it is natural to
write

o) = /., ” w(‘r)exp(— %)d‘r 22)

where any reasonable ¢(t) can be explained by a suitable choice of the weight
distribution w(r). However, the choice of distribution is not arbitrary, but defined
by (1.1); this approach does not explain the universality of the empirical relaxation
law. Is this approach, therefore, completely useless? Does it merely mimic a real
situation [5]? Or is something missing in the mathematical analysis?

We focus below on a careful probabilistic analysis of this traditional approach to
relaxation in dipolar systems; our ultimate aim is to show the uniqueness of the form
of relaxation function expressed by (2.2).

Let us consider a polar dielectric in an electric field. When the electric field is on,
some of the dipoles have enough energy and time to reach a configuration with the
dipole momenta aligned along the field lines. Now let us remove the field. How and
according to what law will the dipole orientations relax to a random configuration?

The traditional interpretation of relaxation phenomena is based on the concept of
a system of independent exponentially relaxing species with different (independent)
relaxation rates. The exponential relaxation of an individual dipole is conditioned
only by the value taken by its relaxation rate. So, if the relaxation rate of :th dipole
has taken the value b, then the probability that this dipole has not changed its initial
aligned position up to the moment %, is

P1(0; > t|3; = b) = exp(—bt) for t>0 b>0. (2.3)

The random variable 3; denotes the relaxation rate of ith dipole and the variable 6,
the time needed for changing its initial orientation; 38,,08,,... and 6;,8,,... form
sequences of non-negative, independent, identically distributed random variabies.

Following [6] we define the relaxation function ¢,(t) for th dipole as a probability
that it has not changed its initial aligned position up to the moment ¢. From the law
of total probability, we have

B0 =Pr(6;30)= [ op(-bDaF,) @4

where Fj is the distribution function of each relaxation rate §;, ie. F(b) denotes
the probability that the relaxation rate of ith dipole has taken 2 value less than or
equal to b.

In a system comnsisting of a large number N of relaxing dipoles, the relaxation
function ¢(t) has to express the probability that the whole system has not changed
its initial state until the time {. So

(1) = Jlim Pr(A, min(6,,...,0,) > ¢) (2.5)

where A, is a suitable normalizing constant. In order to obtain an explicit form
of ¢(t), let us observe that the right-hand expression in (2.4) is just the Laplace
transform of the distribution function F3(b) at the point ¢ (see (A4)),
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Because 8; are independent, we get

Pr (min(ﬁl,...,BN) > Ai) = [Pr(e,. > -At—)]N = [c(Fﬁ;Ai) ]N.

N N N

The Nth power of the Laplace transform of the non-degenerate distribution function
Fy converges to the non-degenerate limiting transform, as N tends to infinity, if and
only if Fj; belongs to the domain of attraction of the Lévy-stable law (see appendix
A). Then, for some o , 0 < o < 1, we have

fim [c (Fﬂ : -i—)] . expl—(A1)°] (2.6)

Ne—oa Nlja

where A is some positive constant. Hence, the limiting transform in (2.6) is the
Laplace transform of the Lévy-stable distribution function.

It is not necessary to know the detailed nature of F to obtain the above limiting
form. In fact, this is determined only by the behaviour of the tail of F,(b) for large
b, and so a good deal may be said about the asymptotic properties based on rather
limited knowledge of the properties of Fj. Namely, the necessary and sufficient
condition for the relaxation rate 3; to have the limiting transform in (2.6) is the
self-similar property in taking the value greater than b and the value greater than
zb (see (A3)). It has been suggested [5-7] that self-similarity (fractal behaviour)
is a fundamental feature of relaxation in real materials. This result, obtained here
by means of pure probabilistic techniques, independently of the physical details of
dipolar systems, is in agreement with models [6-11] identifying this region of fractal
behaviour.

Therefore the relaxation function (2.5) with A = ,/* forsome 0 < & < 1, is
well defined and equals

$(t) = exp[-(At)7] @7

where A is a positive constant. In the case when o — 1, the relaxation function (2.7)
obtains the Debye form (2.1) with m, = A~!. From the mathematical point of view
[26] this corresponds to the case of degenerate distribution function Fg, i.e. to the
case when the random relaxation rate can take only one value. (Let us note that the
weight distribution w(-) in (2.2) has to be identified [11] as w(7) = b*p(b;, 1),
where p(b; ar,1) is the density function of the Lévy-stable distribution supported on
the non-negative half-line and b =1/7.)

At this point, it has to be stressed that independently on a statistical distribution
of relaxation rates 3, in expression (2.3) we find a hidden assumption. Namely, each
relaxing dipole after a sufficiently long time (after removing the electric field) changes
its injtial position with probability 1, ie.

1 fort =0

Pr(6; > t]5; = b) = exp(~bt) = {0 for t — oo

(2.8)

This is the main reason why the relaxation function (2.5) cannot have any other
form than (2.7). Namely, it follows from (2.8) that the random variable 8, is finite
with probability 1, so this form is a simple consequence of the extremal value theory
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for minima [27], and not only the result of the above analysis. Then, in order
to obtain a class of dielectric responses broader than the Williams—Watts form, we
should modify (2.3) to define a random variable which can be infinite with some
non-zero probability. As we will see below such a modification leads us directly to
the experimentally observed power law (1.1) which includes the Williams—Watts and
the Debye responses as special cases.

3. Probabilistic representation of the cluster model for dielectric relaxation

The concept contained in the cluster model [5, 12, 14] represents a radical departure
from the traditional picture of relaxation. It is based on a realistic picture of the
physical nature of the structure of an imperfectly ordered state and its consequences
for the dynamics of its consistuent molecules or atoms. It is suggested that the
condensed phase systems, both liquids and solids, which exhibit position or orientaticn
relaxation, are composed of spatially limited regions (clusters) over which a partially
regular structural order of individual units extends. Orientation or position changes
of individual units can be produced by the application of an appropriate field, such
as an electric field when the individual units are dipolar. In the limit of the linear
response, the probe field may only change the population of fluctuations without
altering their nature. Because the structural ordering within the cluster is incomplete,
the equilibrium geometry cannot be maintained by these displacement fluctuations.
Therefore spatial uniformity must be lost on relaxing as the imperfect equilibrium
structure evolves. During this process the strongly coupled local motions are expected
to be generated first, thereby breaking down the displacements into clusters; this will
be followed by the weakly coupled inter-cluster motions which produce the partial
long-range structure. Each of these processes (motions leading to the local structure
order and to the gross cluster array order) have their own characteristic contribution
to the observed features. In this model, from the consideration of the way in which
the energy contained in fluctuations is distributed over a system of interacting clusters,
entirely new expression for the response function in the bound dipole case has
been obtained. However the result is in agreement with the empirical power law
(1.1), the argumentation based on the properties of deterministic fractal circuits does
not convince us of the general applicability of this model. In general, the cluster
model can be seen to encompass the concept of a constraint hierarchy [12]. A
hierarchical scheme, with faster degrees of freedom succesively constraining slower
ones, is considered [9] as the only reasonably natural way of generating a wide range
of relaxation times. It is also suggested [9] that a modified traditional approach
of independent relaxing species with random relaxation rates, in which a picture
of parallel relaxation should be changed to a serial summation of a hierarchy of
relaxations, can be used in the description of relaxation phenomena.

We propose below a modification of the traditional approach according to
the analysis given in section 2. Instead of the property (2.8) we assume that
a dipole altered by the eiectric field does not have to change its initial position
with probability 1. Since, in the cluster model, the subsequent relaxations of the
surrounding clusters drive the chosen one towards the ensemble equilibrium on the
time scale of the surroundings, the behaviour of a relaxing dipole in this cluster will
be constrained by the maximal time of the structural reorganization in all surrounding
clusters. At this point, we supply no detailed microscopic connection, hoping only to
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find a probabilistic mechanism which confirms the conclusions of the cluster model
and uniquely leads to the empirical power law.

Let us assume independent exponential relaxations constrained by the maximal
time of the structural reorganization in all surrounding clusters. In the system
consisting of a number N of relaxing dipoles, the probability that the ith dipole
has not changed its initial position up to the moment ¢ equals exp{—&min(¢,s)]
if its relaxation rate has taken the value b and the maximal time of the structural
reorganization in all surrounding clusters (under the suitable normalization) has been
equal to s, ie.

Pr (Q'N 2t|8;,=0b, a;l max(mn,, . .. L INY N M) = s) = expf—bmin(¢, 5)]
(1)

forb >0, s > 0, > 0. The random variable 3; denotes the relaxation rate of the ith
dipole and the variable #,, the time needed for the structural reorganization of ith
cluster. The variable 6 , denotes the time needed for changing the orientation by the
ith dipole in the system consisting of N relaxing dipoles. B, 3;,... and 5,7, ...
form independent sequences of non-negative, independent, identically distributed
random variables. The variables 6, ,...,8,  are also non-negative, independent,
identically distributed for each N. It follows from (3.1) that the random variable
6 ., depends on the random variable 3; and on the sequence of random variables
CNTERVE NAVE AAYRETRE N
In contrast to (2.8) we have

Pr (G,N?tlﬁe = b, a;lmax(nl,...,nl_l,'q‘_“,...,nN)=S)

1 fort=20
= {exp(—bt) forit < s
exp(—bs) = constant > 0 for t — oo,
It means that dipoles altered by the external field do not have to change their initial
positions with probability 1 after removing the field as ¢ tends to infinity.
The relaxation function ¢(1) has to express the probability that the whole system

has not changed its initial state until the time ¢. So, in a system consisting of a large
number of relaxing dipoles,

2 1) (32)

YA RRRR]

$() = lim Pr(A, min(6

where A is a suitable normalizing constant. The function ¢(t) defined by (3 2) is
monotonically decreasing and non-negative. Moreover, non-negativity of 8 gives us
#{(0) = 1. In order to obtain further properties of ¢(1), first we will show that ¢(2)
fulfils the general relaxation equation (15).

Since sequences 3;, G,,... and n ,7,,... are independent, we have from the law

of total probability

Pi(0,, >118,=6)= [ expl-bmin(t, $)l4F ()
0
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where F, (s) denotes the distribution function of the random variable
a;lmax(n,... 21, _y»T,4ys---2My)s 1€ the probability that this random variable
has taken a value less than or equal to s. Since n; are independent and identically

distributed, we have F,  (s) = [F, (e, s)]V"!, where F, denotes the distribution
function of each nj.Assuming F, differentiable, we have F, = differentiable, too, and

d t t d i
— =2 — .= = - — | = =b—11.
dtP’(a-N’AN'ﬁ’ ) [1 F"'”(AN)]dte""( bAN)

From the law of total probability once again, and from the Lebesgue theorem, we

have
d t t d 1
d_tPr(B‘N 2 A_) = [1—* F"’hN (A—N)] d_i‘.ﬁ(F‘e’ A—N) (33)

N

where L(Fyg;t) is the Laplace transform of the distribution function F; of each 5;
at the point ¢ (see (A4)).
Because 6  are independent and identically distributed for each N, we have

B(t) = Jim_ [Pr(f)w > ;{—)]N. (.4)

N

On the other hand it follows from (3.3) that

bz )] = s )] ()

)] 2l

As we know from the previous section, the Nth power of the Laplace transform of
a non-degenerate distribution function F; converges to the non-degenerate limiting
transform, as N tends to infinity, if and only if F; belongs to the domain of attraction
of the Lévy-stable law, and, for some 0 < o < 1, we have

Jim [;: (Fﬂ; N_f/-;)] Y e exp(—(AD)) (3.6)

where A is a positive constant. At the same time,
t 1a, -1
FH,N _ﬂ'; =Pr(N a,. max(‘-'?ls---,ﬂ,-_,,ﬂ,-ﬂa---,fl,\,)Sf)
N

tends to a non-degenerate distribution function of non-negative random variable, as
N tends to infinity, if and only if F,, the distribution function of each % , belongs to
the domain of attraction of the max-stable law of type II (see appendix B). Then, for
the normalizing constant e, proportional to Y *inf{t : F,(t) > 1- (1/N - 1)}

we have
] t (At)™7
Jn () = o0 (-H457) 0
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for some positive constants v and k, and A taken from (3.6). To obtain the limiting
forms (3.6) and (3.7) we need not know the detailed nature of Fz and F,. In
fact, this is determined only by the behaviour of the tail of Fg(b) for large & (as
in section 2} and of the tail of F,(s) for large s ie. the necessary and sufficient
conditions for the relaxation rate 3; and for the structural reorganization time 7 _to
have the limits in (3.6) and (3.7) are the self-similar properties, firstly of 3, in taking
the value greater than b and the value greater than xb (see (A3)), and secondly of
n, in taking the value greater than s and the value greater than zs (see (B3)).

The relaxation function in (3.2) with A = ~Y is well defined and, by (3.4)-
(3.7), fulfils the general relaxation equation

%(t) = —aA(At)°-1[1 —exp(—(Ajc)-q)]Qs(t)- 38)

The coefficient & is a consequence of the normalization in the limiting procedure in
(3.7). It decides how fast the structural reorganization of clusters is spread out in a
system—~k — O means the case in which cluster components are neglected. If & — 0,
(3.8) takes on the well known form [5,6,17-21]

%(t} = —aA(A)*1é(t) (3.9

with the solution (2.7). In the general case we get the solution in the integral form

#(1) = exp [- (%) * fu (kuw)ail - exp(——s""’/"‘)]ds] . @10

It is worth noting that the relaxation function (3.10) can be rewritten in the following
form:

@(t) = exp[—cS5(2)]

where ¢ = k~=/7 and

(K77 Ay
S(t) = / [1—exp(—~s—7/%)]ds.
0

A similar form has been obtained as a result of the studies of different approaches
(the Forster direct-transfer model, the hierarchically constrained dynamics model, and
the defect-diffusion model) analysing non-exponential relaxations, with emphasis on
the stretched exponential Williams—-Watts form [6]. Although each model describes
a different mechanism, they have the same underlying reason for the stretched
exponential pattern: the existence of scale invariant relaxation rates. Presenting one
more approach, we have obtained the Williams—Watts relaxation function (2.7) as a
special case of (3.10) when k& — 0. We have also shown that the underlying reason
for this is the existence of a type of self-similarity in the behaviour of relaxation rates.

Let us discuss the properties of the relaxation function ¢(f) given by (3.10). As
is shown in (C4), as ¢ tends to infinity, ¢(t) tends to zero if v < o, and to some
positive constant otherwise.
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The dielectric function most easily measurable experimentally is the response
function f(t) defined as

£(t) = _%Lf(f). @3.11)

This function, where ¢(#) is given by (3.10), exibits the power-law properties (1.1) in
both short- and long-time limits only if v > o (see (C3), (C8)). Namely, we obtain

Cy(A)™" as At 1
1) & 3.12
® {chn-m4 as At > 1 G2

where n =1- a, C; = aA, and

(84
hd if & =
m:{k TEa

¥ - o iy >

e exp[~x ([ 11~ exp(—s0s
Ch =4 +'/1w[1—1/s—exp(-—s'1)]ds)] fvy=ea

9—5— exp [— (%)ah V/:o{l - exp(—s""/“)]ds] ify>a.

The power law (3.12) in the case ¥ = o, with the parameters n = 1 — o« and
m = a/k, has been obtain carlier in [15]

\

4. Discussion of the dielectric response function.

A discussion of the significance of the solution ¢(¢) of the general relaxation equation
(3.8) may be given with reference to tables 1 and 2. The relaxation function ¢(t) is
determined by the parameters 0 < a < 1, v 2 o, A > 0, and k& > 0. Depending
on the value taken by the parameter «, there are clearly seen two distinct cases
leading to the same form of the power-law response (3.12). We also have to note the
importance of the parameter & which distinguishes the two-parameter power-law from
the one-parameter Williams-Watts and Debye response functions, i.e. if &k is small,
the general relaxation equation (3.8) takes the form of the so-called unimolecular
fractal equation of motion (3.9) with the solution (2.7) which is just the Williams—
Watts relaxation function. Moreover, if o — 1 we obtain the rarely observed Debye
case (2.1)

In table 1 we compare the propetties of the relaxation function ¢(t) and the form
of power-law coefficients n, m in two admissible cases: 4 = o and v > a. It has to
be stressed that the results 0 < n < 1 and m > 0 are obtained theoretically, while
m < 1 is imposed by the experimental data.

In table 2 we present the various empirical dielectric responses representing
specific limiting conditions for parameters determining the relaxation function ¢(t).
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Table 1. Power-law response

Parameter + v=o Y>> o
Properties of the #(0)=1
relaxation function ¢(%) monotonically decreasing

¢(t) — 0 #(t) — $(0) >0
Limiting properties of the (A~ as At 1
Limiting prop Fyw A

ponse function f(t) (At)~m=1 as Aty 1

Form of the power-law n=1-o
coefficients n, m m=afk m=y-c
Properties of the 0<n<t
power-law coefficients r, m since 0 < o <1

m >0 m>0

since k> 0,a>0 sincey>a,a>0
m<lfork > a m<lfory<l4a

Table 2. Special cases of the empirical dielectric response

Parameter ~ Y= 1> o
Typical experimental I-ngm<1
observations a<kgl lagy<l+a
Less typical experimentai O<m<l-n
observations k>1 oL y<la
Cole-Cole response m=1-n

k=1 v =1l
Cole-Davison response 0<n<<Im—1

k= o v —=1l4+a
Broadened Debye response n—0,m—1

a~1,k—1 =1,y =2
Flat loss response n—1,m—0

a-+0,k>0 a—0,y—0

According to the studies presented in [22] the domain of ‘typical’ experimental
observations represents the majority of the observed data, while ‘less typical’ one
represents the remaining data. Among the two-parameter responses we recognize not
only the well known symmetric Cole-Cole and asymmetric Cole-Davidson relaxations,
but also the Debye-like (broadened Debye) and the frequency-independent (flat loss)
relaxations [3). The ‘broadened Debye’ case was not previously recognized as a
specific form of relaxation, although it can be modeled by the generalized function
obtained in the cluster model [12] and is sometimes observed experimentally [3).

5. Conclusions

Previous analyses of experimental data [5,12-14] have demonstrated that the cluster
model provides a very good description of dielectric relaxation. Its unique feature is
the presence of two power-law regions of time dependence, and we have shown that
this can be attributed rigorously to two forms of self-similarity, In contrast to [13,14]



Dielectric response 405

we have studied here more general random systems than that of the deterministic
fractal circuits.

In section 2 it has been shown that the traditional approach, based on the concept
of a system of independent exponentially relaxing species with different relaxation
rates, cannot be accepted since it leads to the relaxation function of the Williams—
Watts form only. Consequently, in section 3, independent exponential relaxations
constrained by the maximal time of the structural reorganization in all surrounding
clusters have been postulated. Following our earlier work [15] we have developed
a probabilistic representation of the cluster model by employing here the extremal
value theory. As a result we have shown explicitly how to identify two regions of self-
similarity leading to the general relaxation equation (3.8). Let us stress that the two
self-similar behaviours provide the necessary and sufficient conditions for the limiting
formulas (3.6) and (3.7), determining the parameters 0 < a < 1,y > 0, A > 0, and
k& > 0 in the general relaxation equation. We have also proved that the response
function given by (3.11) exhibits the power-law properties in both short- and long-
time limits only if 4 > <. In section 4 the form of the power-law coeflicients n, m in
both possible cases v = o and 4 > « has been discussed (table 1), and, finally, the
experimentally observed dielectric response functions have been recognized (table 2).

We realize that there are still open questions to which the presented probabilistic
analysis does not give answers. For example, the physical sense of the above
coefficients has not been achieved yet. However, we hope that the formalism
presented here may have practical significance.
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Appendix A

In this appendix we collect some facts from the theory of the Lévy-stable laws on
non-negative half-line [23,24]. Because over the last decade the Lévy-stable laws have
become very popular in modelling real phenomena [25,26], we will limit ourselves to
reviewing basic definitions and facts.

Let 3, 8;, ... be a sequence of non-negative, independent, identically distributed
random variables and let F(b) denote the distribution function of each G, ie.
F(b) =Pr(f; <b). Let S, = By + f + -+ + B,

The distribution function £ is said to be Lévy-stable if it is non-degenerate and
if there exist some constants A, > 0 such that

A =

S,
Pr(—“—<b) = F(b) for each b > 0.
n
In such case there exists constant ¢, called the index of stability , 0 < « < 1 such
that A, = nl/e,
The distribution function F’ belongs to the domain of attraction of the Lévy-stable
law if for some constants A, > 0, A > 0, we have

Pr (% < b) = G(Ab) (A1)



406 K Weron and A Jurlewicz

for stable G with some index of stability o, 0 < & < 1 (the notation -= denotes the
weak convergence, i.e. the convergence at continuity points of the limiting function).
In this case, A, is proportional to nl/<,

It should be stressed that for any distribution function F if the non-degenerate
limiting function G in (Al) exists it is Lévy-stable.

The distribution function F belongs to the domain of attraction of the Lévy-stable
law with the index of stability « if and only if

o 1-F(zb)

!:']_!.“l](:)lo -1——.F(b)-u = for each z > 0. (AZ)

Let us observe that the condition (A2) can be interpreted as a type of self-
similarity:

foranyz > 0 Pr(3; > zb) = z~* Pr(3; > b) for large(fA3)

For non-negative random variable 3 with the distribution function F(b) we define
the Laplace transform in the following way:

L(F;t) = /um exp(~bt)AF(B)  t30. (A4)

Let us note that the function exp(—t%*), 0 < « < 1, is the Laplace transform
of the Lévy-stable distribution function with the index of stability «, and that the
condition (A1)} is equivalent to

[c(F; Ai)]:;o expl—(A1)°].

n

Appendix B

In this appendix we present basic facts from the classical extremal value theory [27)].
Classical extremal value theory is the asymptotic theory for maxima of independent
identically distributed random variables. The fundamental result of this theory, called
the extremal types theorem, states that the limiting distribution of such a maximum
under the linear normalizations has one of just three possible forms. The next result
gives us necessary and sufficient conditions under which this limiting distribution is
each of these types. It also gives us the form of normalizing constants.

Let #y,m5,... be a sequence of independent identically distributed random
variables and let F(t) denotes the distribution function of each n;. Let M, =

max(7n,,...17y,)-

1. Extremal types theorem for maxima

If for some constants a,, > 0,b,, we have

Pr(a (M, - b ) <t} % G(t) as n — 0o (B1)
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for some non-degenerate G, then for some constants ¢ > 0, b, we have G(¢) =
Gy(at+ b), where G, is one of the three following extremal value types for maxima:

Type L: Gy(t) = exp(—e™") ~o<Lt< too
I c 0 t<i
e 11: t) =
R o) exp(—t~7) for some v > 0 =0

Tpe I Gy(t) = {exp[ (-] or some v > <

t<0.

Conversely, each distribution function G, of extremal value type may appear as a
limit in (B1) and, in fact, appears when G, itself is the distribution function of each
-

If the non-degenerate limit in (B1) exists we say that F', the distribution function
of each #;, belongs to the domain of attraction of the max-stable law of adequate
type.

Now we will formulate the conditions under which a distribution function belongs
to the domain of attraction of max-stable laws. As we see below, in the case of Type
IL, it is the tail behaviour which is responsible for this; in this case the tails have to
have a self-similar property of a special type as for the domain of attraction of the
Lévy-stable law (see (A3)).

Let tp = sup{t : F(t) < 1}. Necessary and sufficient conditions for the
distribution function # to belong to the domain of attraction of max-stable law
are:

Type It There exists some strictly positive function g(f) such that

L 1-Ft+=g(t)) .
Ly Y

Type II: tp =00

for all real =

and

. 1=F(iz) _ _,

:IHEO = F(2) =z 4 >0foreach z >0
Type 1II: tp < oo

and

Jm P — =z v > 0 foreach z > 0. (B2)

To obtain G = G, the constants a,,, b, in the convesgence (B1) should be taken in
each case above to be

Type I: a, = {g(ﬁn)]"1 b, =46,
Type 1 a, =(6.)" b, =0
Tpe I: @, = (tp—6,)" b, = tp

where 6, = inf{t: F(t) 2 1-1/n}.
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Let us consider now only non-negative random variables n;. However, we can
obtain as a limit in (B1) the distribution function of each extremal ‘value type for
maxima. But, if we demand this limit to be supported on the non-negative half-line,

we have only one possibie form of it, namely, the type I1. For this type the condition
{B2) can be interpreted as a form of self-similarity:

forany z >0 Pr(n; > xs) = ™" Pr(n; > s) for large s . (B3)

Appendix C
This appendix contains the detailed proof of the power-law properties (3.12) of the

response function (3.11). We use the log-log scale, so, let g(s) = log F( A~110%).
From (3.8) we have

) = a(ane [1 —exp (——(i',fj:)]¢(t) €D

and

d_g_ — _ a1 1077 Y €xp (_10—-73/k)
ds(s)—-a—i «l0 [1 exp(— = )] klO = exp (<10°7 /i)

It is easy to find that

and

“(y—a)-1 7>«

dg @
39, T Y~ ! y=a ©2)
“-00 v <a.

As one can see, the long-time limit in the log-log scale is finite only if v > ¢, s0
only in this case can the response function f exibit the power-law properties in both
short- and long-time limits. From (C2) we get the only possible form

sy CLADT as At < 1 )
TloAan Tl as At 1

where n =1 — o and
o .
m={§ fy=a
¥ - ifv>c.

To show (C3) we have to prove that, as ¢t — 0, {At)!~*f(¢) and, as ¢t — oo,
(At)Y=+1f(¢) or (At)*/*+1f(¢) tend to strictly positive constants Cy,y Cy,
respectively.
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It is not difficult to show that the integral f°[1 - exp(—s~="/*)]ds is finite if and
only if v > «. Hence, for the relaxation function (3.10) we have

$(t) = ()
t—doo {qb(oo))(] fvy>a.
From (C1) we have

ti TS0 = adlim 4(1) = o (s)

since ¢(0) = 1. Also

. f(t)
:l—l-nolo (At)~(y-e)-1

ot Jim L RCA071/1)

n S e = aApe()  (06)

is, by (C4), a positive constant if v > «. In the case v = o we get

O
0, AR =

_ aA(%) Y [--;; Uul“ — exp(—s~1)]ds

+ [711=1/s - exp(-s7ias )] )

QA% Jim (AD*/E(2)

is a positive constant since the integral [~ {1~ 1/s — exp(—s~1)]ds is finite.
Therefore, by (C3), (C5)-(C7), the response function (3.11) has the power-law
property only if v > o and of the form

)~ { Ci(At)™ as At 1 )

Cy(At)~™1 as At 1

where n =1-a, C; = a4, and

m—{% fvy=«a

vy—a Hfvy>a

(@A 1/ ! -1
WGXP[—E(/{; [l—exp(—s )]ds

Cy = 4 +-/1°°[1-—1/s~—exp(—s'l)]ds)] fy=¢

| & &P (‘(%J“’” fuwﬂ- exp(-s“‘ff‘*)lds) ify>a.
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